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92 the Linearization gf Volterra Integral Equations

I. Introduction. |

Given a nonlinear differential equation
() xt = cx+ o(]x]), (' = a/at)

it is well known that the asymptotic stability of the linear system
y' = Cy implies the local asymptotic stability of the trivial solu-
tion of (1). All known proofs of this fact depend on the fact that
solutions of the linear sjstem decay exponentially or the equivalent
fact that there exists a quadratic Lyapunov function for the linear
system,

Consider a system of n equations of the form

t

(2) x(t) = f£(t) + [ a(t-s)e(x(s))ds, t 20

A o
where x,f and g are n-vectors, a(t) dis an n X n matrix and
g(0) = 0. If f is "small" this system is often replaced by the
more easlly analyzed linear system
_ t
(3) y(t) = £(t) + {) a(t-s)Jy(s)as,
where J 1is the qacobian matrix g'(0) = (E€i<0)/axj)- However
Levin and Nohél have proved by examplé that solutions of equations
of the form (3) need not decay exponentially, c.f. [1, p.350, line
(2.11)]. Therefore it has not been possible up to now to show
that solutions of the linear system (3) approximate those of (2) in
an appropfiate sense, except in the case where solutions of (3)

decay exponentially.




Nohel [9,10] has pointed out this gap in the theory of Volterra
integral equations. He has asked whether or not a theory of linear-
ization can be developed when solutions of (3) do not behave like solu-
tions of an ordinary differential equation. The purpose of this papér is
to provide in section II below a theory of linearization for equations
(2) under very general assumptions on a(t)J. The essential tool in
our analysis is Theorem 1 of [2] which we use in place of the usual

estimates from ordinary differential equations.

The advantaée of our method is that one can replace the
local, nonlinear problem (2) by the linear equation (3) and the
linear equation for its resolvent. These linear equations may be
studied using known methods such as transform techniques. In
Sections III, IV and V below we give some examples which illustrate
this.

In the sequel we shall need the following notations and
conventions. Let R denote real n-space with a norm |x]. Let
IDI denote the corresponding matrix norm. Let BC[O,») be the

space of bounded continuocus functions on O £ t < o with norm

IA

Inl_ = sup (|n(6)]; 0= ¢ < ).

Similarly BC(R) will be the space of bounded continuous functions

on -o< t <o with norm
||h||l = sup {|h(t)]; -o <t <},

II. General Stability Conditions.

Concerning equation (2) we assume:




. hl
(A1) a € L'(0,t) for each t >0,

(a2)  £(t) € BC[O,=),
(a3)  g(x) € C'(R"),g(0) = 0 ana
(AL) the Jacobian matrix J is nonsingular.

Since we assume J is nonsingular, it is no loss of gen-
erality to assume J dis the n Xn didentity matrix I. We need
only replace a(t) by a(t)d and g(x) by J_lg(x). Thus equa-
tion (3) may be rewritten in the form |

t
(3') y(t) = £(t) + [ a(t-s)y(s)ds.
o

It is well known that the unique solution of equation (3')

has the form

t
(4) y(t) = £(t) - [ v(t-s)f(s)ds, (t z 0)

)
where the matrix b 1is the resolvent kernel determined by the
matrix equation

t

(5) b(t) = -a(t) + [ b(t-s)a(s)ds.

o

We assume that

(85) the matrix b determined by (5) exists for all

t>0 and |b(t)] e Ll(O,oo).

Theorem 1. TIf assumptions (Al-5) are satisfied then there exists

€,>0 and € >0 such that when the solution y(t) of (3')




vl = €, the solution x(t) of (2) exists for all

.Proof, Since Db € Ll(O,m) it follows that equation (2) is equiva-

lent to the system
ot
(6) x(t) = y(t) - [ b(t-s)G(x(s))ds,
)
where y is defined by line (4) and

G(x) = g(x) - x =o(]x]). (|x| - o0)

Pick € >0 such that if [x|s e, then

2ja(x)| [ [v(s)ass |x|,

00

and [ |b(s)|ds|g'(x) - I] <1. Pick €, = el/2. Let Tx(t) be
o .

the function defined by the right hand side of equation (6). Let

S(O,Gl) = {(h € BC[O,%); ”h”o = el}'

OQur estimates on € and € imply that T is a contradiction
o]

map on S(O,el). This proves Theorem 1.

Corollary 1. If (Al-5) are satisfied, then there exist €, >0

and €, >0 such that when ”f”o s ¢, the solution x(t) of

(2) exists for all +t 2z 0 and satisfies ”x”o s €.

Proof. - Pick such that

62-

(2]

e (1 + £ lo(s)|as) = € /2,




where el

above implies ”y”o s €

is the constant given in Theorem 1. Then equation (k)

o° Thus Corollary 1 follows from Theorem 1

above,

Theorem 2. Let (Al-5) hold and let €, and €, be given by

1
Theorem 1 above. If ”y”o € e and y(t) -0 as t — o, then

x(t) 20 as t -,

Proof. Let T be the positive limit set of the solution x(t),
that is I 1is the smallest set such that x(t) tends to T as
t 5w, Since x(t) is bounded it is easily shown that T is
nonempty, compact and connected.

Since x(t) solves equation (6), y(t) -0 and b € Ll(O,m)

it follows from Theorem 1 of [2] that I' is the union of solu-

tions of
t
(7.1) z(t) = - [ b(t-s)a(z(s))ds,
(7.2) |z(%)] = € (-» < t < »)

Let Tz(t) be the function defined by the right hand side
of line (7.1l) when z € BC(-w,») and Hz”l £ €. The estimates
in the proof of Theorem 1 above imply that T is a contraction
map. Thus Z(t) = 0 is the unique solution of (7.1-2). This
means that T = {0}. Thus x(t) -0 and the proof of Theorem 2
is complete.

Using Corollary 1 and Theorem 2 we obtain the following

result,




Corollary 2. Let (Al-5) hold and let €, and e, be given by

Corollary 1 above. If ”f”o <€, and y(t) -0 as t -, then

x(t) - 0.

III. Applications: Integrable Kernels.
The purpose of this section is to apply the theory in
Section IT with the additional assumption that a e Ll(O,w). We

shall need the following result.

Theorem 3 (Paley and Wiener). Let a € Ll(O,m). Then the solu-

tion b of equation.(5) is Ll(O,w) if and only if the determinant

(8) det (I-f«;xp (-st)a(t)at) # o,

in the right half plane Res z O.

This theorem is proved by a trivial modification of the
proof of Paley and Wiener of Theorem XVIII in [3, p. 60]. Paley
and Wiener use Theorem 3 to study the asymptotic behavior of solu-
tions of equation (3') in case f(t) >0 as t - o, Their re-

sult has the following nonlinear generalization,

Theorem 4. Suppose (Al-4) hold, (8) is satisfied for Res z O

€

A

and eé is given by Corollary 1 above. If ”f”o and

2

£(t) -0 as t oo, then x(t) - 0.

Proof. The solution of the linearized equation (3') is given by
(k). Since f(t) -0 as t-—->o and b e Ll(O,w), the Lebesgue

 Dominated Convergence Theorem implies that y(t) - 0. An




application of Corollary 2 completes the proof of Theorem b,

Levin [4] has obtained another nonlinear generalization of
the Paley-Wiener result. His result is neither stronger nor weaker

"than Theorem !t above. Levin studies a scalar equation (n=1)
while we allow n > 1., Our hypothesis on a(t) is weaker than
Levin's and our hypothesis on g(x) stronger. Theorem 3 is a
local result while Levin's result is global.

The condition f(t) -0 is essential to the proof of
Theorem 4 above. If f has a different type of asymptotic be-
havior, it may still be possible to analyze the local behavior of
solutions of equation (2). For example in Theorem 5 below, f(t)

is constant but not necessarily zero.

IV. Applications: Integrodifferential Equations.

The purpose of this section is to apply the theory of
Section II to the study of the local behavior of integrodifferential
equations of the form

t
(9) x'(t) = mg(x(t)) + J k(t-s)g(x(s))ds, x(0) = x_, (t 2z 0)
o
where k dis locally integrable and. m is a constant. We allow
m = 0. This system can be written in the form of equation (2) if
one sets f(t) = x_ and
t
a(t) = m + [ k(s)ds.
o

We wish to investigate the asymptotic behavior of solutions



of equation (9) when x, dis small. We remark that the definitions
of stability and asymptotic stability of the trivial solution

X = 0 of (9) are the same as for ordinary differential equations.

Theorem 5, ILet f and a be as defined above. If (A3-14) hold,

a € Ll(o,m) and (8) is true for Res = O, then for x_ suffi-

ciently small

(i) the trivial solution of (9) is stable and

(i1) each solution of (9) tends to a constant as t — w.

Proof, It follows from the proof of Corollary 1 above that for
each €, 0<e<e¢, thereexists ®>0 such that ”X”o £ e
when |x | = 8.
o
To prove part (ii) note that if [x | = e then [x(t)]| = €
for all t z 0. Moreover
% t
x(t) = (I-f b(s)ds)x - [ b(t-s)G(x(s))ds.
o] o
. 1
Since b ¢ L7(0,w),
% . ]
lim (I-f b(s)ds)xo = I ~ [ b(s)ds,

t 5w o o

exists. By Theorem 1 of [2] the positive limit set of x(t) is

the union of solutions of

1

© t
(20.1) z(t) = (I-f b(s)ds)xO - [ v(t-s)G(z(s))ds,
O -00

A

(10.2) |z (t)] €. (-0 < t < )

Let S(O,el) be the closed sphere in BC(R) with center

at the origin and radius e;. Let S = be the subset of S(O,el)



consisting of constant functions. The estimates on € in the

proof of Theorem 1 imply that the right side of (10.1) defines a

contraction map on S(O,el) and on S,. Therefore the unique

I

solution of (10.1-2) is a constant function z(t) z . Thus the

positive limit set of x(t) is the single point =z x(t) -z

O’
as t — o, and Theorem 5 is proved.

For X small, the limit Z is obtained by solving the

equation

z, = (I-f b(s)ds)x - (féb(s)ds)G(zo).
) o

Let the solution be 2z = F(xo). Then F(0) = 0 and F maps a
neighborhood of X, = 0 diffeomorphically onto a neighborhood of
2z = 0. This means that the trivial solution cannot be asymptoti-

cally stable,

V. Applications: A Reactor Problem.
The dynamic behavior of a continuous medium nuclear reactor
can be described, under certain simplifying assumptions, by the

following integrodifferential equations for the unknown u and T:

(11.1) u'(t) =—f:a(x)T(x,t)c1x,

(11.2) T =T+ (08(ut), (w<x<m, 0<t < )
with the initial conditions

(12) u(0) = u_, T(x,0) = £(x). (-»<x <)

These equations have been extensively studied by Levin and

Nohel, in the linear case g(u) = u c.f. [1,5] and in the nonlinear




10

case cf. [6]. In the reactor problem g(u) = exp(u) - 1.

We wish to study the asymptbtic behavior of solutions of
(11) using the theory of Section II. Our analysis depends heavily
6n the papers [1,5, and 6] both for motivation and techniques.
Since Levin and Nohel have treated the uniqueness problem for (11-
12) we do not consider it further.

Let * denote the L2 Fourier transform. If f,q, and 7
are L2(R), then an elementary application of transform theory
shows that u(t) satisfies the equation

t
(13) u' (t) = —£ ml(t—s)g(u(s))ds - me(t),u(o) = U
where for j = 1,2,

0

(1/m) S exp(-x"6)n, (x)ax,

m, (t)
and

By (x) = Re 1" (x)a’ (~x), hy(x) = Re £ (x)a’ (-x).

Using a Taubian theorem Levin and Nohel [1] study the linear equa-

tion

t
(14) vi(t) = -f m, (t-s)v(s)ds - m,(t),v(0) = v,_.
They prove

Theorem 6 (Levin and Nohel). Suppose f,a and 1 satisfy:

(a6) £(x), n(x),a(x) e o(exp(-Ax|)),x > 0,|x] - =




11

) s (o], ]£®]) < =
- 00X <00

(A8) h,(x) 2 0 and h, (0) £ o.

Then the solution v(t) of (14) exists for all t2z 0 and v(t) =

O(t-5/2) as t o,

Corollary 3. Ef the hypotheses gf Theorem 6 are satisfied then there

exists a positive constant K, (independent of v, and f) such

that for all t =z O

()] = & (v el sl = § 1200 |,

Proof. Let vl(t) be the so}ution of (1) when vo=1 and m2(t) =0
and let ve(t) be the solution when v - 0. Then the general solution
is vl(t)vo + v,(t). By Theorem 6 v, (t) is bounded.

Let V be the Laplace transform of Y Using lines 5.28 and
5.32 of [1] we see that for -~0o <y < =

o0

V(iy) = B(y) [ S exo(-(3) 2] x-5] Ya(x)£(s)axas

-00 ~00

where H(y) is in Ll(-abw) and H depends only on ¢ and 1.
Lemmas 5.1-5.6 of [1] show that V satisfies the hypotheses of Theorem 2

of [8, p. 266]. Therefore

o)l = e T lay { laG)lax [ 1209l ax.
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This proves Corollary 3.

Using Theorem 2 and 6 we prove

Theorem 7. Let f,a and n satisfy (A6-8). Let g satisfy (A3)

with g'(0) = 1. Then there exist © >0 (depending only on 1,c

, then the solution

and g) such that when |uo| =% and [f]| =8

u(t) of (13) exists for all t 20 and u(t) -0 as t -,

Proof. Let b(t) be the resolvent kernel for equation (1k4), that
is b(t) solves (1U4) in the special case v, =0 -and f=m1n. By
Theorem 6 we see that v(t) and b(t) = E}Xt-B/E) as t —» «., Thus
b is in Ll(O,w). We know from Corollary % that |v(t)| is small
when Iuol and ||f]| are small. An application of Theorem 2 completes

the proof of Theorem 7.

Corollary 4. Let the hypotheses of Theorem 7 hold. If & 1is given

by Theorem 7 and |[f]], |u0| £ 93, then u(t) e Ll(O,w).

Proof. Fix u  and f with lu | and |f]] = 8. Iet v(t) be the

solution of (14). There exists K > O such that for all t = 0
lo(e)] = k(6+1) /2, v(6)] s k(8e1)/2,

Since wu(t) » 0, there exists T >0 such that if t z T then
[G(u(e))] = le(u(t))-ut)| = [u(t)]/(K).

Let K, bea bound on |G(u(t))] for 0=t <w Forall t 2 0,




vl3

T
u(t+T) = v(t+T) - [ b(t+T-s)g(u(s))ds
o

t

- | b(t-s)G(u(T+s))ds,
(o]

| u(t+T)|

A

K(‘c+t{_‘+l)'5/2 + KK, fT (t+T+l-s)—5/2ds)
o

t
+ [ K(tr1es) /P u(mes)] / (4K) s,
o]

A

k(1) /2 4 2 ((641) Y2 - (em1) Y3

t
+ [ (t+1-8)2/2 u(mes)] Juas
(o]

A

t
Hy () + Hy(t) + / HB(t-s)[u(s+T)|ds.
o

The comparison theorem of Nohel [7, Theorem 2.1] implies

that for t 2 0, |u(t+T)| s U(t), where U solves

A t
(15) u®) = Hl(t) + He(t) + [ HB(t-s)U(s)ds.

Since for any t > O,
. | .
] Hy(s)ds = hKKl(\/ Tl -VerT+l - 1+ Nml) s LtKKl(-\/T+l - 1),
)

it follows that H, € Ll(O,m). Clearly H, and H5 € Ll(O,w) and

[o0]
/ H5(s)ds s 1/2, Thus the right hand side of equation (15) determines
o




1L

a contraction map on Ll(O,w). Since U(t) dominates |u(t+T)][,
u(t) e Ll(o,m)_ This completes the proof of Corollary 3.
In order to study the asymptotic behavior of T(x,t) we

need the following additional assumption:
(A9) f,n € C(R) and 71 is locally Holder continuous.

Theorem 8., Suppose g satisfies (A3) and g'(0) = 1. Let f,a .

and n satisfy (A6-9). Then for wu  and [|ff| sufficiently small

problem (11-12) has a unique solution wu(t),T(x,t). Moreover,

sup [T(x,t)] -0, (t - )
- 00K <00

and u(t) >0 as t - with u e L (0,w).

Proof. For u_ and [f[| sufficiently small Theorem 7 and Corollary

3 imply the existence of a solution wu(t) of equation (13) such that
u e Ll(O,w) and u(t) —» 0. Given this u(t) define T(x,t) on

e <x< o 0<t<e by

00 t o
(16) T(x,t) = [ G(x-y,t)f(y)ay + [ [ G(x-y,t-s)n(y)e(u(s))dyds,
- 00 QO =0

where G(x,t) (hﬂt)_l/2exp(—x2/(ht)). Using the same proof as in
[7, p.264] we verify that the pair u(t),T(x,t)- is a solution of (11)
-and (12). Moreover, for any t >0
0 o0 t
|76,8)] = (ere) ™2 e ey ()2 [n)lay T (e-9)" 2 g (u(s)) as.
o - o

Since g(u(t)) is Ll(O,w) it follows by dominated convergence that
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ftS'l/alg(u(t—S))Ids = ft(t-S)'l/zlg(u(S))lds - 0.

o o
Therefore T(x,t) -0 as t -« uniformly for -« < x < o, This
proves Theorem 8.

Theorem 8 is neither stronger nor weaker than the results
in [6]. The advantage of Theorem 8 is that we avoid a hypothesis on
the interconnection of f,q and 1n, c.f. [6, line 1.16]. The main
disadvantage of Theorem 8 is that the result is local while the re-

sults of [6] are global.
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